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ABSTRACT

Since high density traffic flow by definition involvesa large
numbér of vehicles, models of traffic flow _which involve aggre-
gate quantities such as density, flow rate and mean speed seem
particularly relevant, In this paper, models following this ap-
préach are developed and explored in several stages, including
the introduction of the conservation of cars equation, the Fund-
amental Road Diagram and representations of driver anticipation
and reaction time. Particular attention is given to the study of

stationary solutions and stability.



1, Introduction

In recent years, attention to the problem of congested seway
traffic has been growing., Among the more promising appro: .i:es,
other than building more freeways, is the moderation of traffic con-
gestion by on-ramp control [1]. The control procedures employed, how-
ever, are neczessarily simple because the dynamics of dense free-
way traffic are not yet well understood in the sense that acceptable
mathematical models are available, |

Several rather distinct approaches to traffic models have
been taken, These are commonly grouped into categories as queue-
ing, car-following, Boltzmann-like statistical and continuum models.
(A rather complete critical bibliography of papers dealing with these
models appears in reference [ 2].) Each of these appfoaches has its
areas of application;; the continuum models seem particularly well
sﬁited to the modeling of dense freeway traffic,

In discussing the performance of a freeway, traffic engineers
‘speak of the flow rate and density of vehicles, They are the variables
with which con’ciﬁuum models deal directly. Unfortunately, continuum -
models have not b’een adequately developed since the work by Lighthill and
Whitham [ 3]. In this paper, refinements to the model first proposed
by Lighthill and Whitham are developed with emphasis given to the
analysis of stationary traffic patterns and bottlenecks. The ultimate
goal of the sort of analysis pursued here is to develop a mathematical

model of freeway traffic which is sufficiently accurate to permit the

intelligent design of effective means of control. The most serious

U,



drawback of the approach taken here is that, to date, there has been
no.attempt to correlate the theory with data. The theory which is
developed is justified solely on qualitative grounds, primarily on

questions of stability.

In Section 2, the basis of the continuum approach is presented
includin'g a derivation of the conservation of cars équation and the
introduction of the Fundamental Road Diagram.‘ In Section 3, driver
anticipation is introduced into the model. The method of analysis
'of.sta'.tionary solutions, bottlenecks and stability is presented in
some detail here. In sections 4 and 5, these methods are applied
to the study of fnodels which include a representation of reaction

time,.

2. Continuum Models

The description of a large number of individual vehicles
becomes difficult if only because of the fact of large numbers.
This sort of problem is not uncommon in the physical sciences
and is often overcome by changing one's point of view.A Extreme
exam'ples of this occur in fluid and gas dynamics where one abandons

any pretense of following the motion of individual molecules and



concentrates on average properties of large groups of molecules.
It is clear that the number of vehicles in any traffic situation is
not of the order of magnitude of number of molecules in a fluid,
but, nonetheless, it may be valuable to introduce new variables

which reflect average properties of relatively large numbers of

vehicles,

To illustrate the nature of this point of view, we shall
derive what we can properly call the conservation of cars equa- °
tion. Suppose we station two observers on a road at poihts X4
and x5, x, being the forward point. FEach observer counts
cars as they pass his station, and generate two functions mn,(t)
and ny(t), the accumulated number of cars counted. At the
same time we shall take motion f)ictures of the interval be-
tween these observers, counting the number of cars present

at any time, nz(t)., Now it is clear that the number of cars

.. 4



in the interval changes over a period of time At according to the
formula
na (t+At) - ng(t) = [ny (t+At) - n; (£) T~ Tng (E+AL) - ny (1) ],
We can introduce two average properties of the vehicle traffic,
First the densit\y of vehicles in this segme;lt of road at time t can be

defined as the number of vehicles per unit length of road, so that

ns (t) .
Xa =~ Xy

p(t) =

Second, the flow rate over a period of time At, for example at location
3{1, is
n, (t+At) - n; (t)

q(x,) = .
At

Our equation can then be written as

(x5-%,) [p(t+at) - p(t) 1= At[q(X:L) - q(Xg)]
or

p (t+At) - p(t) N Calxz) - q(x,) ] =0
At T

In the limit, where At and x, - x, are considered to be infintesimal,

this reduces to

(1) °p 4+ .29 =0
ot ox
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It is clear that this iast equation is really a sort of approxima-
tion since the quantities defined, p and ¢, lose their meaning (can-
not‘be sensibly derived as indicated by observation) if At or x, - x;
is too small, The preceding equation is exact, however,

This mo\del of traffic is by no means complete at this point
since nothing has been said about the dynamics of the traffic. The
simplest model derives from what has been called the Fundamental
Road Diaéram [4 7], which specifies the relationship between the den-
sity and flow rate. This can easily be observed empirically [5] and
ciepends 4on many factors: the specific road, the time of day, weather
conditions, etc. One typically finds a relationship of the sort illustrated

in Fi'gure 1, It‘,_should be understood, of course, that the diagram rep->

resents the smoothed version of a great amount of experimental data,

;I’he qu;l;t.a;’éi‘vé J‘;'eatures ;iepicted can be easily explained by a‘
simple xﬁathematical model. Driving experience has indicated that one
travels more slowly when more cars are present on the road, i, e,,
when the density is higher, Letting u denote the space-mean speed

of drivers in a segment of roAad, a simple model of this effect is

u = umax(l -p /pjam)

where pjam is the maximum density existing when cars are at rest,

To relate average car speed to flow rate, consider a short

-



section of road fﬁrough whici; vehicles are mo;/irig a:t é;)-fls£ant s-pe.ed
and with fixed average spacing (so that the density remains constant),
1f the section has length £ and there are n vehicles, the average
spacing is £/n, and the density is n/4. On the average, a car will

pass the forward observer every At seconds, where

is the period of time that the vehicle takes to cover the spacing dis-

tance. The flow rate is just 1/At, so that

q=pu.

Using the model for the speed-density relation above, we have

q=pu__ (1- p/pjam) .

This is the equation of a parabola and has the general shape of the
Fundamental Road Diagram de‘pic"ce,d, In particular, we note that if
no cars are present, p =0 and g = 0. If the vehicles are in a traffic

jam, = pjam' the flow again vanishes., The maximum value of q,

which for our model occurs at p = 5 p, (and u=3u ), is some-
jam max

times called the (maximum) éapacity of the road. .It should be clear

that this is a very desirable,op'erating point for a road,

7.



The conservation of cars equation and the Fundamental Road
Diagram provide a basis for a simple though crude qualitative des-
cription of traffic flow. One striki‘ng feature‘ is the preéence of dis-
continuous solutions representing zero thickness shock waves which
correspond tq the experience of drivers sharply applying their brakes
in a sequence moving backward through traffic, A fairly complete
discussion of this model has been presented by Lighthill and Whitham
[37. Itis thepurpose of the remainder of this paper to refine ‘this
model by including effects representing driver anticipation and re.-

.

action time,

3. An Anticipation Model

-The avoidance of shock W-aves requires that we model driver .
anticipation in some.way; for example, it is reasonable to suppése
thﬁa-{"_c:he flow rate is reducéd if the car spacing ahead is inc;reasing.
Designating the function represented 1n the Fundamental Road

.Diagram by Q(p), this means

q=0(p) - Ve

vV a constant positive parameter [(subscripts denote partial differ-

entiatioh) J  Now subshtutmg i_ntc')"(l)“ one obtains

8



{2) p,tec . Fvp

t DY )
2
where Reproductible copy: SIS
es .
dQ(p)
c(p) = _—dp_(.e__

Equation (2) represents only one possible refinement. In the
following, we shall consider several poésible models and discuss
their validity on the basis of stability and ability to describe certain

special traffic situations.

3.1 Analysis of Stationary Solutions

As soon as any refinements are made, e, g., those leading to
(2),exact analytical solutions of any generality become impossible,
"However, one can successfully investigate stationary solutions, that

—~is,solutions in which the density takes the form

p=p(x- Ut
or

p=p(8), E=x-TUt,

where U is a constant. Physically, solutions of this sort mean that
an observer moving along a road at speed U would see an unchanging

traffic pattern., Substituting this form into (2), one obtains

9



-Up_+ c(p)pg = Vegg -

g

Not particularly that this reduces the number of independent variables

to one. This can be integrated once to yield.

N

(3) -Up+Qlp) = v, +A,
aQ

where A is a constant (recall that c(p) = dp

). In fact A is the
constant flow rate relative to an observer moving along the road with

speed U. To see this, consider the conservation of cars equation

In this stationary situation, p, = -Up

t q, - qg. Then, integrating,

g’
q=Up+ B,

B a constant, If U =0, B is the flow past an observer fixed on the

road. For U >0, an observer moving with the traffic pattern observes

a reduced flow rate moving past him, reduced in fact by an amount Up.

Then B =gq - Up 'is the flow past this moving observer. Noting that
q=0(p) - ve_

we see that B = Q(p) - Vo_ - Up = A, i. e,, A has the interpretation

’

suggested, ‘
10



"Equation (3) can be separated as

Vdp . = da
Qo) - [Up+A]

For specific forms of Q(p) this can be integrated to yield & = E(p),

then inverted to yield p = p(§). As an example; consider

Qp) = pu_ (1 - p/pjam)

Then

: u
_ 2 maXx - _
Q(p) -Up-A=-p > * pla_-U)-A
_ jam
u
. —max (p-p;)(pz-p)
jam
where
: i
oL (1 - U ) -_F[_iz <1.. U >Z_Apjam]2
P12 2 pjam Ymax 4 pjam u Ymax ]

max m
Note that we have chosen < p,. Since + 4+ o, we find from (3
) pl 2 pg

- Upy +Q(py) = A

- Up; + Qpz) = A

‘and from these A and U are determined:

11



M Qp2) - p2R(p1)
Py - P2

Q(py) - Qlpz)
Pa - o)

\

The roots p, and p, have an elegant interpretation on the Fundamental

¥ Road Diagram. (See Figure 2.,) With p

€= 0, (3) can be written as

A+ Up=Q(p)-

The left hand side of “chi_s' eQuation represents the straight-line depicted

as intersecting the Diagram curve Q(p), The roots p; and p, are just

the densities at the intersections. Now

Vo, '
1 . 1 1
dE = 1% - [ + :Id
Ulmax (p2 - p1) p- Py Pz - P P

and integr ating

v

p. ' A A
am
; SR = [10 - 1o _ ]
: . umaxpz“pl) glp p_ll glpe pl
ijam p -0
= T  log |
umax P2 - P1 Pz ~ P
Y -



For P 4sp2 Sypspjam‘ (see Figure 5)

pi - Cpyexp(a &) - pl
p= 1-Cexp(0L§) , EZEJ -_-—log<c(p _p2)> C >0,

( and in particular p pyas §3x, p- %a as £+ &%),

The solutions illustrated represent at least two familiar traffic
situations. In the solution indicated to be valid for p,Sp=<py, set
pz = pjam' Then the solution represents the gradual slow down of
- vehicles fo a jam, with the density far down the road being p.

The opposite situation; start up from a jam is represented by
the so‘luti_on.indicated to be valid for p; <p< %am' There is some am-

biguity in this case, however, since it does not seem reasonable to

impose a condition on the density far up the road. Experience as a
driver convinces one that car sﬁééfng cha'nlgé.s‘ rather abl-:{iiahtlgr-a;c the
head of a line of vehicles which are starting up from jam conditions..
If we can estim;te pg at this point, we can generate a reasonable so-
lution,

Consider t}'lree vehicles: the one thatis next to start moving, _
the vehicle ahead and the vehicle behind. The center vehicle of the

three is not moving because it takes a driver a finite time to respond

to the fact that the car ahead is moving. Suppose this response time

13 '



is T and suppose vehicles accelerate uniforrrﬂ}; (at first) with acceler-

1
ation a. Then the vehicle ahead has moved a distance > atz, t<T

before the center vehicle moves at all, The average separation is

N

T

1 1 2., _ 1 . 5
TJo'Zat dt—6a'r

Adding a car length, 4., the density is on the average

1
1 .
e aT®+ £,
ahead of this center vehicle, while the density behind is I,l The
c

rate of changev of density is then

1 1
1 T2
_6“aT2+ !xc ¢ ]
' Ag
For AE we shall use
1 1,
—2—-‘ (2(: + —6— at?® + £

14



so that

. 1 2 . 2
Ap = zc-\:zc+gu] = - aT
AE . 1 6 1 .
. 2c+i—2-a'rz 6 Lo+ 5 at’

1]

For example, with T =1 second, a =10 ft'/secz, Lo = 15 ft,

Ap aT?

—_—= o1l

AE T b4,

Now we can apply the above boundary condition, at &€ = 0, and

again take pg +0 as. €+ @, Then from (3)

2
aT”™yV

- = 4 ,

Upjam 64 A

-Up, +Qp, ) =A-

.Note that U has been implicitly fixed., In fact every T seconds a vehicle

a distance L. back in the waiting queue starts to move. Thus

"!'C
T

15
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The two equations deriving from the boundary condition then serve to
fix A and the density far from the jam, P, Infact the first

equation defines A and p_ is determined as the root of the second

equation. For example, for

Qp) = pumax(l - p/pjam)

we have
Le at?v Le
T Pe e, ma.x(1 " Pa /p ) 6L, * T pjam ’
1 .
Note that ¢ = —, so we find
jam Le
J'A 2 %
P 1 1 [ aT v 1 7 c
= -1 $ oY ]
p 2 * 2 1a__ ¢ * 4 \" T 1u
jam max
The upper sign has been taken in accordance with the nature of
solutions as illustrated in figure (5) and valid for p <p< P.
) L j
The flow rate at infinity is given by Figure 5,
Q(p,) = A+ Up_
2 ‘ 2 4 X
aToy Ml c aT’V c ])
= - ! =11 -
Upjarn+ 64, - * UpjamL2< * Tu (61,1 4[1 Tu ‘ ]
max” max max

- 16



2
Recalling that U = -_Z¢

.p Lc = 1, this reduces to

T ' Tjam
Qlp) = 1. Le >+ atevV o1 -a’Ty. + 1/1____55__\,2]2
Y AN 62, 7 Leu_ 4\ T ra

max ax max

The approach we have taken here to analyzé start up from a jam
can also be employed to study what happens when a speed limit restric-

tion is removed at some fixed point on a road. Now, U =0, and p

g

can be estimated in a similar manner,

3,2 Staéi-onary Bottlenecks

Variations in road conditions, for example a curve or a section
of reduced speed limit, cause the Fundamental Road Diagram to vary.

The situation for a bottleneck is illustrated in Figure 6. In terms of the

JRUSUEE .. . [N

specific model

Q(p) = pu (1 -op/p._)

the variation can be most easily implemented by having u =u (x).
A max max

Analytically, it will prove convenient to take u . to be
max
piecewise constant. So let us consider one specific problem. Sup-

'pose a bottleneck is located in the interval (O, L) and that u (x)=u
. " max

b -



in the bottleneck, u x(x) =u elsewhere, u, su., The solutions we

ma b

previously obtained are applicable here. We have only to determine
and apply boundary conditions.
Since the location of the bottleneck is fixed to the road, a station-

ary traffic pattern implies U = 0. "Then
Q(p) = Ve, + A

If traffic conditions are characterized by fixed densities at x = * o, 0, +0

in either case. Then the flows at o must be the same and A = Q;D.
The densities, however, need not be the same.

With A specified and U = 0, the roots p, and p, are deter-

mined for each of the three regions: upstream of the bottleneck, within

the Bottleﬁéék,ﬂ‘_a;ndudc;Wnstream from the Botﬂeneck. Specifically,

. 1
1 1, Q_mpjam]z
P1 = ijam_ 4Pjam T T4 ’

o 3

L ©
,pa I ijam 4pjarn ] u

both upstream of and downstream from the bottleneck, while in the

- bottleneck : 18



If p is restricted by p <p, then

vp., : _'
E+K= J?m -')'1o'g'< Pr-°P
. . umax Pz ~ P Pz~ P

and solving for p:

Cpz exp(0 &) - py
p= Cexp(ag) -1 ’ pSpISPQ,

h = - d C i bit iti tant,
where « umax(pz .pl)/\) pjarn an is an arbitrary positive constan

Note that as € 4+ «, p ?p, so that this solution cannot be valid for all

positi-ve E. Andas E—+- o, p-+p,., The complete behavior is sketched

in Figure 3, The solution presented is then valid for £ <Eo = %log(cpl >
. o . = L el . . PR - - - - ., p2

In similar fashion, one finds for P1 £p <py (see Figure 4)

Py + Cpz exp (a.E)
1+ Cexp(ag)

, -®<E<eo, C>0.

" The constant C determix_}xes the value of p at £= 0,

19



1
-1 12 Q°°pJ'am ]2 ‘

‘ b 7 28am " L 2Pjam u :
1

- 1o [ 1 _Qm%am]z
Pab ™ 2 pjam 4 pjarn uy ’

l .
Since Q_ has a maximum value of —p , pp and pp are

. u
4 jam max

always real. And and p will be real if
ye r Ab 2b

40
> ,
ub p

jam

that is, if the capacity of the bottleneck (as determined by the max-
imum speed uy ) is greater than the flow a! infinity. And in this case
f <p1b SpZ.b <p-2 . Because of this, one finds that the qnly po'ss..ible

solutions are the ones illustrated in Figure 7. The density at x =0

must be in the range plb

< 'p(Ao) < pz . The solution valid in the region

x < 0 is of the form

" p1 + p2C; exp(ax)

’ ‘ ‘ = + C, exp(oax)

with C, >0, That valid in the region x >L is of the same form

(replace C,; with Cjz). In the bottleneck region, the solution is

20



: Pt P Cpexp (Bx)
e 1+ C, exp (F%)

if p(o) = Py, ©OF is

P 1- Czexp(Bx)
if p(o) <p,, - In these
_ (p2 - pl)u B— (pr - plb)ub
ijam ijam

In the three regions there are the three constants C,, Cyand Cj
to be determined. Two equations for their determination are obtained

by imposing continuity of density at the two boundaries:

N w0 Pyt 0,0 Pt Sy
1+¢, T+¢c,

ot e L Pipt Pl p+p233
1+C,D, 1+C,D,

In these, D2 = exp(BL),:D3 = exp (@L). There does not seem to be any

natural way of determining a unique solution by the imposition of a fur-

ther condition. :
| - 21



3.3 lS.ta-bil.i-ty of Sté'tiéﬁar};‘s;o‘lutioné

Now that we have obtained stationary solutions, there arises
the question of whether these solutions will ever be attained a:nd main-
tained if the traffic pattern initially differs from the stationary pattern.
To investigate this question, we shall use a perturbation analysis to
 examine small deviations from a given stationary solution.

The general time-dependent equation is

4 + C =V .
(4) p, T Clplp = vp
This, being a form of a diffusion equation, implies that the number of
cars on the road remains constant (conservation of cars), To see this

note that

2]

] e[ paee | laweve, T

(Recall that dQ/dp = C(p)).) If the density tends to

- constant values at either end of the road, integrétion by parts yields

[22] w

L[ pax=- @] _

dt

A



i.‘e. , the total number of cars increases with a rate equal to the net
inflow rate. If the flow rates at either end are identical, the number
of cars remains constant.

It is presumed that a stationary solution, p*(x - Ut), is known,

i.e., b

- Upg+ Clo¥)pt= Vot

4

where €= x -~ Ut., Introducing

p' = p- p*, p' = p'(E, t) »

pp - Upg + Clp* + pl)pg + [Clo¥ + p') - Clp¥) ] pf= voie -

It is instructive to consider the simplest case of uniform flow,

e

i.e. p* = constant. The equation for the disturbance then reduces to
4

' | 1 B 1 | B— 1
s?t Up§+C(p +p)pg Vpgg

Linearizing this equation (expanding and keeping only terms of first

order in p') yields



In the uniform flow case U can be chosen arbitrarily., For convenience

we take U = C(p*) to obtain
! = V) 1 .

It is well known that solutions of this (heat) equation are always stable.
Specifically, if the initial disturbance to the uniform flow is bounded,
the disturbance dissipates with the traffic pattern returning to uniform

flow.

An even stronger statement, based on the maximum-minimum
principle [ 6], can be made. Given any initial traffic pattern, the
extremes of density will never exceed the extremes in the initial pat-
tern. This statement is not limited to small disturbances frofn uniform

flow,

Consider (4) which governs the time dependent behavior of
the traffic pattern. If the density is at an extremum, o =0 so that
. - - - - ‘ - - S
at this point 0, \)pxx. At a maximum of dens#y, pxX 0, so that
the density cannot be increasing at this point, i.e., ) 0. Ata
minimum of density, p 20 so that p =0,

XX t

As a consequence, this traffic flow model is incapable of
describing many interesting traffic situations in which small dis-
turbances can lead to a breakdown of the traffic pattern, i.e., build

<

up of large densities in certain segments of the road,

~4



4, A VRefined Mddel éf -Traffié Flow

In the previous section, the inadequacy of the simple model
discussed there was demonstrated in the sense that the representa-
tion of some in\teresting and important traffic situations was pre-
cﬁlded. The single characteristic lacking in that model which leads
to this situation is a representation of delay in résponse to traffic
conditions. In this section a model will be discussed which considers

the fact that response to changing traffic conditions is not immediate,

In the model considered in the prévious section, the flow

rate actually attained was specified in terms of the density by

q = Q(p) - Ve, -

‘Here we shall distinguish the quantity on the right hand side as the
desired flow rate and assume that the flow is adjusted by an amount

. proportional to the difference between actual and desired flow rates.

From the 'point of view of drivers, the natural means of adjust-
ment is to accelerate or decelerate according to whether the current
speed is less than or greater than that desired. Since flow rate divided

by density is speed, the suggested model is

du _ q - Qp) +Vp
dt—--a‘- X

)

-

e

«
re



: d
0 a positive constant. In this, —c-l% is the substantial derivative of
the speed, thatis, the rate of change of speed as viewed by individ-

ual vehicles.“ In full

Using q = pu, one obtains

q 2 2 _
(5) q -—;pﬁqqx/p—qpx/p =-alq-Q(p) +vp_ 1.

t

4,1 Stationary Solutions

Fix;st we shall consider the special case of un~
changing traffic pattern fixed to the road. That is, p = 0. Then
q, = 0 follows from the conservation of cars equation, If the inflow
rate is a'ssumed constant with time, tﬁen q, = 0 also. With these

(5) reduces to

x 2 ‘
—= - v
p

The qualitative nature of the solutions can be seen with the aid

of the Fundamental Road Diagram.

-
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The quantities q, & and Vv define what we shall term the critical

density, pc:

The significance of p. is that for p<p,., the denominator of the
right hand side of (6) is positive and negative for p>p . Note

that p. depends on the flow rate q.

As we shall see when some specific solutions are found, the
location of @ with respectto p; and @ as illustrated on the Funda-

mental Road Diagram above is quite important, Since p, depends

" linearly on q, one éasily sees that p; S p; <p, for all q if and
only if the straight line representing p = q//a Vv intersects the Fun-
damental Road Diagram at the point of maximum flow. If the speed

at maxirr}urn flow is denoted by u ~, one has the requirement

gmax

uqmax = \/0,\').. For the specific Diagram function
7 = A -

(7) Qp) =pu__ (1-p /pjam)

one finds



so the requirement here is

‘u =2/av
max
The slope of the Fundamental Road Diagrafn is the wave speed.
At p =0, we denote this by Cax 2° it is clear that the wave speed
will attain a maximum here, Then p.<p,; for all q if and only if
Jayv >c . For Q(p) specified by (7) above, this becomes /av >u
_ max ’ max

Finally, in order that ps <p. for all g, one must have av= 0, Figure

9 summarizes this information.

The character of solutions é'an be deduced from (6) without
a definite specification of Q(p). One need only note the sign of o
as a determined by (6) for p in certain ranges. For fixed q we

shall discuss the various solutions according to the location of p¢.

Wheneyer pP>pe, the denominato;‘ in the expression for P
(6) is negative and positive o-therwise. When p<p,; or p>p,
the numerator is positive; the numerator is negative when p; <p <pg,.
These comments provide the basis for sketching all the possible

solutions, illustrated in Figures 10a, b, c.

28



More general stationary patterns are obtained by assuming solutions

of the form

i p=p(x - Ut) = p(€)

A

The conservation of cars equation becomes

1
o

Uk T g

from which

n

-Up + ¢ A (constant).

a(A +Up - Q(p))

(8) o =
g (A +Up)® _ 4y

p

A similar qualitative analysis can be done here.

<9



The roots p; and p; are now defined by the intersection of the

Fundamental Road Diagram with the straight line A + Up. The

L] .

numerator is positive for p;<p <p,. The denominator is positive

"

for .

(A +Up)® > avp?

or

N . A
p<pc= —
Jav - U

if we require Jav - U >0, The solutions are of the same qualitative

form as illustrated for the U =0 case,

4.2 Sfationary Solutions for an Assumed Diagram Function

Here we shall develop the analytical stationary solutions for the

. . Diagram function

-~ Q(p) =pu__ (- olo. ).



Equation (8) can be written, in this case

, as
Jam (U? - av) (p - m)(p- p)
(9) d§= '
“hax p%(p - p1) (p- 02)
where
1 < -
max max
Ppas = P = A— '
N ¢ ~Jov - U ’
- A
Pse = —
/onv+_ U

Equation (9) can be solved to yield the following solutions:

ou

. (U® - av) b |
£+ k = 'Jam [alogp— -E+clog|p-p1!+dlog‘p'pz‘_]

max

b = 0394/9192

* where

a=[blp, + pp) - (pat pa)I/py P2

1+ap, -b

Pz -~ Py

c= ~a-~-d



and k is a constant which determines the absolute location of the

traffic pattern on the road.

In the special case U = 0, these reduce to

- Vp.
X+k=——u————la;rr—l—- [alogp_

max

where now e

- Au

max
avp.
P jam

max
Vo

4.3 Stability

b |
5 teloglp-p|+dlogle-p]]

Stability of general stationary solutions is difficult to investigate

so we shall limit our attention here to stability of uniform flow. To

proce'éd we shall assume that the density and flow are perturbed from

uniform flow conditions so that-



p=po+tp'
‘p=qo+q'

in which pp, and qo are constants related by qo = Q(po) and ¢ and

a

' are assumed to be small relative to po and qo, respectively. In-

q

troducing these expressions into the time dependent equation (5) and

linearizing one obtains

!+ =0
4",
1 do 9o q;( o p}'( r'CI' - c(po)p'* \)p}'{
q' - — p' + - = -0 :1
ot 8 Pt p5 oS L Po
If we assume an initial disturbance in flow rate of the form elkx , due
. . . . . iwt ikx
to linearity, the time dependent solution will be of the form e e .

The frequency wisin general complex and is determinéd by the wave
number k. The disturbance is stable if w is confined to the upper
half complex plane as in this case the time dependent factor will

. . . iwt ik .
contain a damped exponential, Setting q' = et X, p'"is deter-
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mined by the first perturbation equation to be

Substituting these two expressions for p' and q' into the
. \ -

second equation one finds that w is given by

- qu 1. 2 1 2 . %‘
w="pg + 'zla'i: \:ock AVIR ZO. + iak(c - qo/po) ]
From this, it follows that w has nonnegative imaginary part if and

only if
2
av = (c - qo/po)” .

- Note that if - a is sufficiently large, uniform flow is always stable,
This is in agreement with the result fovund for the simpler model dis-
cussed in section 3 — as it should be, for the refined model here re-
duces to the previous model When o -+ ®,

For the parabolic Diagram function, this condition becomes




There is a second "critical density" which determines stability defined

by

_ oy
Ps pja.rn u
N max

. For »p <,pS , uniform flow is stable and unstable otherwise. If

Jav [u 21, any uniform flow is stable, For 0 < av

max u
max

certain uniform flows are stable. One can see that for sufficiently

<1 only

small density (for high enough speed) the flow is stable but that high

density (low speed) flows will be unstable.

4.4 Stationary Bottlenecks

One traffic situation in which stationary solutions are important
is the presence pf a bottleneck. We shall represent the bottle neck by
a region ip which the Diagrarh function has reduced values from those
for the Diagram function pertaining to the remainder of the . road. The
situation is illustrated below. Qb(p) is the Diagram function pertain-
ing to the bottleneck.

The various possible solutigns which are constructed from the
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stationary solutions sketched in Section 4. 1 are illustrated. The
location of the critical density p. is seen to have a significant effect

on the nature of the solutions.

~

’ Any uniform flow representing-a portion of the flow may be stable
or unstable according to whether p < o, oT P >ps independent of
location of p.. (The values of Py and p. are related to one another

throuéh common dependencies, however,)

e e = e e e - . e . E, P i

, 7Ti1'e so-iut-io'nAs r‘e‘;rese-nt.edAb.;;Fiiig-tulres 131; and 13f. Aar-e .l-aarti;:uiar-ly
interesting in that the existence of the solutions represented by tﬁe
lowest curves in each of these figures depends on the parameters of
'the traffic situation. For example, with other parameters fixed, if
the bottleneck exceeds a certain length, these solutions are no longer
possible., Or viewed from another point of view, with other param-
eters fixed, these solutions are not possible if £he flow rate exceeds

- a fixed quantity.. The only possible solution then is the one,in-which
traffic exits from the bottleneck tending toward the high .density (low
speed) condition, In other words, as the inflow rate is in_creased, a
point is reached at which the high speed traffic pattern "breaks down'',
When a specific Diagram function is specified, the traffi_c conditions

for breakdown can be determined.
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5. A Second Refined Model ofA Tfé.ffié Flow

’ ) -The model discussed in this section is a refinement ‘o_f that dis-
cussed in the previous section in that the anticipation parameter Vv
is reple:ced by Bu. This reflects the fact that antic_ipation is usually
based on the car ahead so that as the speed decreases and headway
(car spacing) decreases,A a driver is less able to anticipate density

.changes, The model is then -

q - Q(p) + Pup,_

cdu _-
& o]

Using u = q/p, this can be rewritten in the form

g e ya_ T q
(1) a - T, +aq, /o -q% /0¥ = -alqa- Q)+ Bp |

L

5.1 Staéionary Solutions

Making the usual assumptions, one obtains

. alg - Qp)) _ ap®(q - Qp))
q qg - ala-oapp)
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The combination of parameters 0B clearly represents a critical speed.
When drivers proceed at a speed less than u. = B, the nature of the
flow changes. The qualitative nature of the stationary solutions here

is identical to that for the model discussed in the previous model.

~

A

5.2 Stability
The stability analysis in Section 4. 3 can be dfrectly employed

if v is replaced by Bup = Bqo/po . Uniform flow is stable if

do do N2
aB 2((:— \'

Po Po /

.For the parabolic Diagram function, this becomes

. .-
o8 = Ymax
2 (1 - .
|")ja.m\ po/pjarn>

It is clearly impossible for this inequality to be satisfied independent
of po. For po 'éufficiently .near P uniform flow is unstable
regardless of the magnitude of the sensitivity and anticipatipn param-
eters o and B.

It should be interesting to examine the nature of solutions for
those ranges qf. density for which uniform flow is unstable, Omne pos-
sible solution ﬁay be a representation of "stop-and-go' traffic., Newell
77 has represented this /phenomen:a by a "two -state" theory.
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6. Summary and Conclusion

The continum models developed hére are an extension of
previous such models in that the effect of driver anticipation and
reaction time have been included. Without a representation of
reaction time, continuum models a{apear not to be capable of de-s—
cribing ;hany interesting traffic situations. " When such a represen-
tation is iﬁcluded in the model, a critical density arises (in section
5, a critical speed arises) abové which uniform flow is no longer

stable., This is probably the most outstanding feature of the model

and accords with driving experience on congested freeways,

‘The siudy of stationary solutions pertaining to bottlenecks
has indicated that traffic parameters determine whether a favorable
passage of vehicles through the bottleneck is possible. In particular,
with other paraxﬁeters fixed, the're is a critical flow_rate above which
the traffic conditions break down in the sense that only a high density

state for vehicles passing through the bottleneck is possible,.

At séveralt points in the analysis a specific flow density re-
lationship has been assumed. The form chosen is not intended as
an accurate description of traffic, but rather was chosen for analytic
coﬁvenience to illustrate the methods. The significant qualitative

features discussed are independent of the specific flow-density

relationship. o7 39
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